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a b s t r a c t

For a class of aggregative optimal growth models, which allow for a non-convex and non-
differentiable production technology, this paper examines whether the set of utilitarian
maximal programs coincides with the set of weakly maximal programs. It identifies a con-
dition, called the Phelps–Koopmans condition, under which the equivalence result holds.
An example is provided to demonstrate that the equivalence result is invalid when the
Phelps–Koopmans condition does not hold.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper, Basu and Mitra (2007) proposed a new utilitarian criterion1 for evaluating infinite utility streams. They
argue that the axiomatic basis of their utilitarian criterion is more compelling than that of the overtaking or the catching up
criteria, used by Ramsey (1928); Atsumi (1965); von Weizs̈acker (1965); Gale (1967); Brock (1970a,b).2 However, the utilitar-
ian criterion is a more incomplete quasi-order.3 To elucidate that the lack of comparability is not a severe handicap in general,
Basu and Mitra (2007) show that for the standard neoclassical aggregative growth model, any “utilitarian maximal” program
(maximal in the sense of being undominated in terms of the utilitarian quasi-order by any other feasible program from the
same initial stock) overtakes all other programs starting from the same initial stock. So, in particular, the set of utilitarian
maximal programs is identical to the set of “weakly maximal” programs (Brock, 1970a) from any positive initial stock.

We examine whether this equivalence result holds for a larger class of aggregative optimal growth models, which allow
for a non-convex and non-differentiable production technology. This is the main objective of the paper.

Our result characterizes those models where the equivalence result holds and where it fails. One would expect that the
set of “maximal programs” obtained for a more incomplete quasi-order (utilitarian criterion) to be larger than the set of
maximal programs from the relatively more complete quasi-order (overtaking criterion). Actually the sets turn out to be the
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1 In this paper, we refer to the criterion simply as “utilitarian”. A precise definition in our set up is given in Section 2.1.2.
2 Some aspects of questionable rankings of the overtaking criterion are also discussed in Asheim and Tungodden (2004).
3 A quasi-order � on a set X is a reflexive (x � x for all x ∈ X) and transitive (for x, y, z ∈ X , x � y and y � z implies x � z) binary relation.
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same for an interesting subset of the class of aggregative growth models considered in this paper, although the equivalence
result does not hold for the entire class. Our analysis identifies a condition (which we call the Phelps–Koopmans condition)
which separates models for which the equivalence result holds from those for which it fails.

To elaborate, the Phelps–Koopmans condition states that if the stocks along some feasible program converges to a stock
above the minimum golden rule stock, then the program is inefficient. This condition serves as the dividing line for models
where any utilitarian maximal program is weakly maximal (and conversely), and where this equivalence fails.

Using the equivalence of utilitarian maximal and weakly maximal programs for models satisfying the Phelps–Koopmans
condition, we show that if a program is competitive (so there exists price support for intertemporal utility and profit maxi-
mization) and efficient (there being no other program from the same initial stock that gives at least as much consumption
in all periods and strictly more in some), then it must be weakly maximal. This generalizes the sufficiency part of a famous
characterization theorem of weak maximality due to Brock (1971).

2. Preliminaries

2.1. The model

We present an aggregative growth model where the production function is not necessarily concave or smooth4 and future
utilities are not discounted.

2.1.1. Production
The production technology is summarized by a production function, f, mapping R+ to itself. The following assumptions

are maintained on the function f throughout.

(F.1.). f (0) = 0; f is increasing and continuous for all x ≥ 0,

(F.2.). There is some k̄ > 0 such that (i) f (x) > x for all x < k̄ and (ii) f (x) < x for all x > k̄.

Assumptions (F.1) and (F.2) are standard. Note that (F.2) guarantees the existence of a unique maximum sustainable stock,
k̄.

It can be shown that there is some k ∈ (0, k̄) such that:

f (k) − k ≥ f (x) − x for all x ≥ 0 (1)

Observe that k in (1) need not be unique. Any k satisfying (1) is called a golden rule stock. The set of all golden rule stocks is
denoted by G. By (F.2), G is a subset of (0, k̄). Obviously, for any k, k′ ∈G

f (k) − k = f (k′) − k′ (2)

We denote this (common) value in (2) by c∗. A program from (the initial stock) k ≥ 0 is a sequence
〈

kt

〉
for all t ≥ 0 satisfying:

k0 = k; 0 ≤ kt ≤ f (kt−1) for all t ≥ 1 (3)

The consumption program 〈ct〉 generated by
〈

kt

〉
is given by

ct = f (kt−1) − kt for all t ≥ 1

It is easy to show that under the given restrictions on f , for every feasible program
〈

kt

〉
from k ≥ 0

kt ≤ B(k) for all t ≥ 0; ct ≤ B(k) for all t ≥ 1 (4)

where B(k) = max{k̄, k}. The analysis of the paper will be restricted to the interesting case where the initial stock k ∈ [0, k̄].
In this case kt ≤ k̄ for all t ≥ 0; ct ≤ k̄ for all t ≥ 1.

A program
〈

k′
t

〉
from k ≥ 0 dominates a program

〈
kt

〉
from k, if c′

t ≥ ct for all t ≥ 1 and c′
t > ct for some t. A program

〈
kt

〉
from k is said to be inefficient if some program from k dominates it. It is said to be efficient if it is not inefficient.

2.1.2. Preferences
We let u, a function fromR+ toR, denote the preferences of the social planner. The following assumption on u is maintained

throughout.

(U.1.). u(c) is strictly increasing, continuous and strictly concave for c ≥ 0.

A program
〈

k′
t

〉
from k ≥ 0 utilitarian dominates a program

〈
kt

〉
from k, if there is some T ∈N such that

∑T
t=1(u(c′

t) −
u(ct)) > 0 and u(c′

t) ≥ u(ct) for all t ≥ T + 1. A program
〈

k′
t

〉
from k ≥ 0 is called utilitarian maximal if there is no program

from k that utilitarian dominates it.

4 This class of growth models was studied by Mitra and Ray (1984), but with a discounted utilitarian criterion.
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A program
〈

k′
t

〉
from k ≥ 0 strongly overtakes a program

〈
kt

〉
from k if there exists ˛ > 0 and N0 such that for all T ≥ N0,

T∑
t=1

(u(c′
t) − u(ct)) ≥ ˛

A program
〈

k′
t

〉
from k ≥ 0 is weakly maximal if there is no program from k that strongly overtakes it. This definition of weak

maximality is due to Brock (1970a).
A program

〈
kt

〉
from k ≥ 0 is good if there exists some G ∈R such that,

N∑
t=1

(u(ct) − u(c∗)) ≥ G for all N ≥ 1 (5)

A program is called bad if

N∑
t=1

(u(ct) − u(c∗)) → −∞ as N → ∞ (6)

2.2. Competitive programs

In our model, since the production function is not necessarily concave, there might not be dual variables (“competitive”
or “shadow” prices) supporting a weakly maximal or utilitarian maximal program. Nevertheless, the notion of programs
supported by such dual variables plays an important role in our analysis. In view of this, we introduce here the concept of a
competitive program.

A program
〈

kt

〉
from k is a competitive program from k, if there is a sequence 〈pt〉 of non-negative numbers, such that for

all t ≥ 1, the following two properties hold:

(a) u(ct) − ptct ≥ u(c) − ptc for all c ≥ 0

(b) ptf (kt) − pt−1kt−1 ≥ ptf (z) − pt−1z for all z ≥ 0
(CE)

In this case, we refer to the sequence 〈pt〉 as competitive prices associated with the program 〈kt〉.
If

〈
kt

〉
is a competitive program from k, with associated competitive prices 〈pt〉, and (kt, ct) � 0 for all t ≥ 1, and f and u

are differentiable on R++, then it is also a Ramsey-Euler program; that is, it satisfies:

u′(ct) = f ′(kt)u′(ct+1) for all t ≥ 1 (RE)

If
〈

kt

〉
is a program from k, which satisfies (kt, ct) � 0 and (RE) for all t ≥ 1, and f and u are differentiable on R++, and f

and u are concave on R+, then
〈

kt

〉
is also a competitive program from k, with associated competitive prices 〈pt〉 given by

pt = u′(ct) for t ≥ 1, and p0 = p1f ′(k0).

2.3. Price supported golden rule

In this section, we note the existence of a stationary price support of the minimum golden rule capital stock (Proposition
1). The importance of a price supported golden-rule for the theory of optimal growth was recognized by Gale (1967);
McKenzie (1968) and Brock (1970a) in models where the technology set is a convex set. It turns out that the con-
cept continues to play a significant role in the theory when the technology set is not a convex set, as demonstrated by
Majumdar and Mitra (1982) in the context of an aggregative framework with an S-shaped production function, and by
Mitra (1992) in the context of a multisectoral model where the technology set is star-shaped with respect to its golden-rule
point.

Let us denote by k∗ the smallest golden rule capital stock; that is, k∗ = min{s : s ∈G}. 5 Positivity of k∗ follows from (F.1)
and (F.2). Recall that c∗ = f (k∗) − k∗. Positivity of c∗ follows from (F.2).

Proposition 1. Assume (U.1), (F.1) and (F.2). There is p∗ > 0 such that

u(c∗) − p∗c∗ ≥ u(c) − p∗c for c ≥ 0 (UP)

p∗f (k) − p∗k ≥ p∗f (x) − p∗x for x ≥ 0 and any k ∈G (FP)

A consequence of Proposition 1 is that if a program 〈kt〉 from k ∈ [0, k̄] is not good, then it is bad.6

5 The continuity of f guarantees thatG is a closed subset of the compact set [0, k̄]. Since k∗ is the minimum value attained on a compact set, it is well-defined.
6 In Corollary 1, (i) can be inferred by using the method used in Majumdar and Mitra (1982, p.116), and (ii) can then be obtained directly from Gale

(1967). The proof of Corollary 1 is therefore omitted.
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Corollary 1. Assume (U.1), (F.1) and (F.2). If 〈kt〉 is a program from k ∈ [0, k̄], then

(i)
∑N

t=1(u(ct) − u(c∗)) ≤ p∗k̄ for all N ≥ 1; and
(ii) if 〈kt〉 is not good, then it is bad.

3. The equivalence result

In this section, we present the principal equivalence result of the paper, which identifies a class of aggregative growth
models for which the set of utilitarian maximal programs coincides with the set of weakly maximal programs.

3.1. Preliminary discussion

It follows from the definitions of Section 2.1.2 that weakly maximal programs are necessarily utilitarian maximal. Thus,
in establishing our equivalence result, we focus on the conditions under which every utilitarian maximal program is weakly
maximal.

Basu and Mitra (2007) showed that in the standard aggregative neoclassical model, with strictly concave and smooth
production and utility functions, every utilitarian maximal program is necessarily weakly maximal. The demonstration of
this result rests on Brock’s (1971) characterization of weakly maximal programs as the class of Ramsey–Euler programs
which are efficient. Since one can provide a more acceptable axiomatic basis for the utilitarian quasi-ordering than the
overtaking quasi-ordering, this means that at least for a class of important growth models, the use of the more restrictive
overtaking quasi-ordering is superfluous.

In seeking to extend the Basu–Mitra observation to aggregative models with non-concavities in the production function,
one runs into the difficulty that Brock’s characterization result is no longer valid. In terms of his demonstration of the
characterization result, the failure occurs at two levels. One arises from the well-known fact that (even with smooth u and f),
a Ramsey–Euler program is not necessarily competitive, when f exhibits non-concavities. The other and more subtle failure
arises from the observation that (when f exhibits non-concavities) a competitive program, which is efficient, need not be
weakly-maximal. [We will return to this last observation in Sections 4 and 5.]

It is clear, then, that we need a new approach. This approach rests on two observations regarding the properties of
utilitarian maximal programs (starting from positive initial stocks). Utilitarian maximal programs are efficient and they are
good. The first property follows trivially from the definitions (since u is increasing). The second property is non-trivial, and
we discuss and establish it in the next section.

In order to build on the second property, one would like to show the “turnpike property” that the stock levels along a
good program converge to some golden-rule stock. However, even though strict concavity of u ensures that consumption
levels along a good program converge to the golden-rule consumption, the convergence of stocks to some golden-rule stock
does not follow. We establish the convergence of stocks under the condition that the set of golden-rule stocks has finite
cardinality (see condition (G) in Section 3.3). Under this additional condition, the stock levels along a utilitarian maximal
program do converge to some golden-rule stock.

When f is concave, the first property (efficiency of the utilitarian maximal program) would in fact ensure that the stock
levels along a utilitarian maximal program converge to the minimal golden-rule stock, because of the Phelps–Koopmans
theorem.7 However, this theorem is not valid in general for non-concave f (see Mitra and Ray, 2009). So, we impose the
condition that all programs converging to golden-rule stocks above the minimal golden-rule stock are inefficient (we call
this the Phelps–Koopmans condition). Clearly, under this condition, the stock levels along every utilitarian maximal program
must converge to the minimal golden-rule stock. It is then important to know the technological restrictions for non-concave
f, which ensure that the Phelps–Koopmans condition holds. These are provided by Mitra and Ray (2009) and are discussed
briefly in Section 5.

The results summarized above help us to establish the equivalence result. In putting together these ingredients to arrive
at the desired result, the role of the property that the stock levels along a utilitarian maximal program 〈kt〉 from k ∈ (0, k̄]
converge to the minimal golden-rule stock, k∗, becomes clear. It allows one to follow any good program 〈k′

t〉 from k for a
long enough finite time period, and then switch to the program 〈kt〉 with as small a loss in utility as one wishes in making
the switch. The utilitarian maximal program 〈kt〉 can then be shown to be weakly maximal since it must have at least
as large a utility sum over the finite time period (including the switch) compared to any such good comparison program
〈k′

t〉.

7 This result was conjectured by Phelps (1962) and proved in Phelps (1965), using an idea suggested by Koopmans. It states that if the capital stock
accumulated along a program is above and is bounded away from the golden rule capital stock, then such a program must be inefficient.
The validity of the Phelps–Koopmans theorem for concave f does not depend on Condition (G). The careful reader will no doubt observe that if f is concave
and (G) holds, then there is actually a unique golden-rule stock. Even though this scenario is somewhat restrictive, it still encompasses the class of growth
models considered by Basu and Mitra (2007).



K. Banerjee, T. Mitra / Journal of Mathematical Economics 46 (2010) 279–292 283

3.2. Utilitarian maximal programs are good

If there is a good program from an initial stock, then any weakly maximal program from that stock must be good, in view
of Corollary 1. Any utilitarian maximal program from that stock also has this property, but it does not follow as directly and
in fact is one of the key steps in establishing the equivalence result.

What does follow quite directly is that there is k′ ∈ (k∗, k̄) such that if 〈kt〉 is any utilitarian maximal program from k ∈ (0, k̄],
then there is a subsequence {ts} of time periods for which kts ≤ k′. And this enables one to construct a sequence of programs
(indexed by s) from k such that for all s large, (a) program s coincides with 〈kt〉 for all t > ts, and (b) each program stays at
the minimum golden-rule stock for all but a fixed finite number of periods. This enables one to infer that 〈kt〉 must be good.
We state the result here; the proof (which fills in the details in the outline provided above) is presented in Section 6.

Theorem 1. Assume (U.1), (F.1) and (F.2). If
〈

kt

〉
is a utilitarian maximal program from some k ∈ (0, k̄], then it is good.

3.3. A turnpike property of good programs

The price-support property of the minimum golden-rule stock, noted in Proposition 1, entails that the “value-loss lemma”
of Radner (1961), as modified for Ramsey-optimal growth models by Atsumi (1965); Gale (1967) and McKenzie (1968),
remains in full force even though the production set is non-convex. [This was noted, and fully exploited, in Majumdar
and Mitra (1982).] A consequence is that any program 〈kt〉 suffers “value-losses” (at the supporting price p∗) if [f (kt) − kt] is
different from [f (k∗) − k∗] ≡ c∗, or if ct is different from the golden-rule consumption c∗, the value losses being uniform when
the differences are uniform. For any good program 〈kt〉, it is straightforward to see that the sum of these value-losses cannot
become infinitely large. That is, for any good program 〈kt〉, one must have ct converging to c∗ and [f (kt) − kt] converging to
[f (k∗) − k∗] ≡ c∗.

It follows from these observations that if 〈kt〉 converges, it must converge to a golden-rule stock. However, it does not
follow from these observations that 〈kt〉 actually converges. The convergence of 〈kt〉 can be ensured under the following
condition:

(G) The set G has a finite number of elements.
It is useful to recall at this point that (G) clearly holds when there is only one golden-rule stock, as in Majumdar and Mitra

(1982), or Basu and Mitra (2007).

Proposition 2. Assume (U.1), (F.1), (F.2) and (G). If
〈

kt

〉
is a good program from some k ∈ (0, k̄], then kt → k for some k ∈G.

3.4. Efficiency and the Phelps–Koopmans theorem

Any utilitarian maximal program in our framework is necessarily efficient, since u is increasing. From Theorem 1 and
Proposition 2, we also know that it has the property that stocks converge to some golden-rule stock. We want to claim that
the stocks must converge to the minimum golden-rule stock.

Golden-rule stocks above the minimum golden-rule stock correspond to inefficient stationary programs. However, pro-
grams along which the stocks converge to such a golden-rule stock need not be inefficient, so that “over-accumulation of
capital” need not signal inefficiency; see Mitra and Ray (2009). That is, the well-known Phelps–Koopmans theorem, which
is valid for concave production functions, does not extend to the class of models considered here. Thus, we cannot establish
our claim by invoking the efficiency property of utilitarian maximal programs.

More can be said. For the class of models considered here (including the restriction (G)), it is possible for the stocks along
a utilitarian maximal program to converge to a golden-rule stock above the minimum golden-rule stock; for an example,
see Section 5.

To establish our claim, we in fact impose the condition that all programs converging to stocks above the minimal golden-
rule stock are inefficient, and we call this the Phelps–Koopmans condition.8

Phelps–Koopmans condition: If
〈

kt

〉
is a feasible program from some k ∈ (0, k̄] and satisfies limt→∞kt = k̂ and k̂ > k∗,

then
〈

kt

〉
is an inefficient program.

Proposition 3. Assume (U.1), (F.1), (F.2), (G) and the Phelps–Koopmans condition. If
〈

kt

〉
is a utilitarian maximal program from

k ∈ (0, k̄], then kt → k∗ as t → ∞.

We now discuss a sufficient condition on f that guarantees the validity of the Phelps–Koopmans condition. When the
production function, f, is concave, then the Phelps–Koopmans condition clearly holds, since the Phelps–Koopmans theorem
is valid in that framework. It also holds for the S-shaped production function model of fisheries (due to Clark, 1971) studied
in detail by Majumdar and Mitra (1982, 1983).

8 One might feel that the Phelps–Koopmans condition makes Proposition 3 trivial. It does make its proof trivial, which is therefore omitted. But, identifying
this sufficient condition is non-trivial; further, having identified this condition, it is then possible to seek technological conditions under which it is valid.
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Mitra and Ray (2009) show that when f is twice continuously differentiable in some open neighborhood of every golden
rule with f ′′(k̂) < 0 for all k̂ ∈G and:

[−f ′′(k∗)] < [−f ′′(k̂)] for every k̂ ∈G with k̂ > k∗ (F)

then the Phelps–Koopmans condition also holds.9 The sufficient condition (F) is useful in the context of a non-
concave production function, since it can be checked with local information about such a function at its golden-rule
stocks.10

Intuitively, condition (F) states that the marginal product of capital is less sensitive to changes in input variations in a
neighborhood of the minimum golden rule when compared to input variations in some neighborhood of the other golden
rule stocks. If a program converges to a golden rule higher than the minimum golden rule, the local information in (F) allows
one to follow an alternative program which gets close to the minimum golden rule and maintain as much consumption as
the original program in all periods and strictly more in some, thereby establishing the inefficiency of the original program.
The precise details are spelled out in Proposition 2 of Mitra and Ray (2009).

3.5. Utilitarian maximality and weak maximality

It can now be established that a utilitarian maximal program 〈kt〉 must be weakly maximal. Otherwise, there would be
a program 〈k′

t〉 from the same initial stock which strongly overtakes 〈kt〉. Since 〈kt〉 is good, this makes 〈k′
t〉 good as well,

so that by the turnpike property for good programs, 〈k′
t〉 must converge to some golden-rule stock. By Proposition 3, 〈kt〉

must converge to the minimum golden rule stock. It is now possible to see that by following the program 〈k′
t〉 for a long

enough time period (to allow both 〈kt〉 and 〈k′
t〉 to get sufficiently close to their respective limits) and then switching to

〈kt〉 beyond that would produce a program which utilitarian dominates 〈kt〉, contradicting the utilitarian maximality of
〈kt〉.

Theorem 2. Assume (U.1), (F.1), (F.2), (G) and the Phelps–Koopmans condition. Then,
〈

kt

〉
is a utilitarian maximal program

from k ∈ (0, k̄] iff
〈

kt

〉
is a weakly maximal program from k.

4. On a characterization of utilitarian maximal programs

For competitive programs, efficiency is equivalent to weak-maximality when the production function, f, is concave. This
result of Brock (1971) fails to hold when f is not concave (as will be clear from the example presented in Section 5). Thus,
it is of interest to note that even when f is not necessarily concave, efficiency is equivalent to utilitarian maximality for
competitive programs.

Of course, when f is not concave then utilitarian maximal or weakly maximal programs need not be competitive. So, it is
useful to provide a more basic characterization result of utilitarian maximal programs in terms of short-run optimality and
efficiency, from which the result stated in the above paragraph follows.

A program 〈k̂t〉 from k ∈ (0, k̄] is short-run optimal if for every T ∈N, (k0,...,kT ) = (k̂0, . . . , k̂T ) solves the problem:

Max

T−1∑
t=0

u(f (kt) − kt+1)

subject to 0 ≤ kt+1 ≤ f (kt) for t = 0, . . . , T − 1
and k0 = k, kT ≥ k̂T

⎫⎪⎪⎬
⎪⎪⎭ (P)

That is, a program 〈k̂t〉 is short-run optimal if it is finite-horizon optimal (with terminal stock at least as large as that for the
program 〈k̂t〉 for that horizon) for every finite horizon.

We can now state the following characterization of utilitarian maximal programs. The proof, being entirely straightfor-
ward, is omitted.

Theorem 3. Assume (U.1), (F.1) and (F.2). Let 〈k̂t〉 be a program from k ∈ (0, k̄]. Then 〈k̂t〉 is utilitarian maximal if and only if (i)
it is short-run optimal, and (ii) it is efficient.

9 Our version of the Phelps–Koopmans condition is “Phelps–Koopmans version II” in Mitra and Ray (2009). It should be noted that the class of production
functions satisfying (s1) cannot be concave, when there are multiple golden rule stocks.

10 Mitra and Ray (2009) obtain an “almost” complete characterization of the Phelps–Koopmans condition in aggregative models where the production
function is not necessarily concave and has a finite number of golden rule stocks. In addition to the result stated in the text, they show that when
[−f ′′(k∗)] > [−f ′′(k̂)] for some k̂ ∈G with k̂ > k∗ , then the Phelps–Koopmans condition fails.
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If 〈k̂t〉 is a competitive program from k ∈ (0, k̄], with associated prices
〈

p̂t

〉
, then, for every T ∈N, and (k0, . . . , kT ) satisfying

the constraints of problem (P), denoting [f (kt) − kt+1] by ct+1 for t = 0, . . . , T − 1, we have:

T−1∑
t=0

[u(ct+1) − u(ĉt+1)] ≤
T−1∑
t=0

p̂t+1(ct+1 − ĉt+1)

=
T−1∑
t=0

{[p̂t+1f (kt) − p̂tkt] − [p̂t+1f (k̂t) − p̂t k̂t]}

+[p̂T k̂T − p̂T kT ]

≤ 0

This means that 〈k̂t〉 is short-run optimal. The following corollary of Theorem 3 is then immediate.

Corollary 2. Assume (U.1), (F.1) and (F.2). Let 〈k̂t〉 be a competitive program from k ∈ (0, k̄], with associated prices
〈

p̂t

〉
. Then

〈k̂t〉 is utilitarian maximal if and only if it is efficient.

This characterization of utilitarian maximality is useful in constructing the example (in Section 5) which shows that the
equivalence result (of Section 3) fails without the Phelps–Koopmans condition.

Neither Theorem 3 nor Corollary 2 depends on the restriction (G) or the Phelps–Koopmans condition, used in the analysis
of Section 3.11 However, if restriction (G) and the Phelps–Koopmans condition do hold (so that the equivalence result of
Theorem 2 is valid), then Corollary 2 immediately provides the sufficiency part of Brock’s (1971) characterization of weak
maximality for this class of non-convex models: if a program is competitive and efficient, then it is weakly maximal. This
result can be stated as follows.

Corollary 3. Assume (U.1), (F.1), (F.2), (G) and the Phelps–Koopmans condition. Let 〈k̂t〉 be a competitive program from k ∈ (0, k̄],
with associated prices

〈
p̂t

〉
. Then 〈k̂t〉 is weakly maximal if and only if it is efficient.

5. On the role of the Phelps–Koopmans condition in the equivalence result

In Section 3, we showed that (under the restriction (G)), the Phelps–Koopmans condition is sufficient to ensure the
equivalence of the set of weakly maximal programs and the set of utilitarian maximal programs. In this section, we show
that if the Phelps–Koopmans condition does not hold, then the equivalence result fails; that is, we develop in detail an
example in which a utilitarian maximal program exists, which is not weakly maximal.12

A key observation in constructing such an example is that if 〈kt〉 is a weakly maximal program from k ∈ (0, k̄], and kt

converges to k, then k must be the minimal golden-rule stock, k∗. In particular, in the class of aggregative models satisfying
(F.1)-(F.2), (U.1) and (G), if 〈kt〉 is a weakly maximal program from k ∈ (0, k̄], then kt converges to the minimal golden-rule
stock, k∗, since convergence of kt is assured by Proposition 2. This observation is of independent interest and is therefore
stated and proved below.

Proposition 4. Assume (U.1), (F.1) and (F.2). Let 〈kt〉 be a weakly maximal program from k ∈ (0, k̄].

(i) Suppose kt converges to k as t → ∞. Then k = k∗.
(ii) Suppose (G) holds. Then, kt converges to k∗ as t → ∞.

Proof. (i) Note first that since a good program exists from k, a weakly maximal program 〈kt〉 must be good. This implies
that k must be a golden-rule stock. Thus, if k /= k∗, we have ˛ ≡ (k − k∗) > 0. Denote u[f (k∗ + (˛/2)) − k∗] − u(c∗) by ˇ; then
ˇ > 0. Since limt→∞kt = k, we can choose N ∈N, such that:

p∗|kt − k| ≤
(

ˇ

3

)
and |kt − k| ≤

(
˛

2

)
for all t ≥ N (7)

11 Indeed, the reader can check that the concavity of the utility function, u, also does not play any role in these two results.
12 We would like to thank Debraj Ray for pointing us in the right direction in search of this example.
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Then, for all T > N + 1 we can write:

T∑
t=N+1

[u(ct) − u(c∗)] ≤
T∑

t=N+1

p∗(ct − c∗)

=
T∑

t=N+1

p∗{[f (kt−1) − kt] − [f (k) − k]}

=
T∑

t=N+1

{[p∗f (kt−1) − p∗kt−1] − [p∗f (k) − p∗k]}

+[p∗kN − p∗k] − [p∗kT − p∗k]

≤
(

2ˇ

3

)

(8)

the first inequality in (8) following from (UP), and the last inequality in (8) following from (7) and (FP). Thus, denoting∑N
t=1[u(ct) − u(c∗)] by � , we have for all T > N + 1,

T∑
t=1

[u(ct) − u(c∗)] ≤ � +
(

2ˇ

3

)
(9)

Let 〈k′
t〉 be a sequence defined by: k′

t = kt for t = 0, . . . , N, and k′
t = k∗ for t ≥ N + 1. Note that k′

N = kN = (kN − k) + (k −
k∗) + k∗ ≥ −(˛/2) + ˛ + k∗ = k∗ + (˛/2). Thus, 〈k′

t〉 is a program from k and for all T > N + 1,

T∑
t=N+1

[u(c′
t) − u(c∗)] = u(c′

N+1) − u(c∗)

= u(f (k′
N) − k∗) − u(c∗)

≥ u(f (k∗ + (˛/2)) − k∗) − u(c∗) = ˇ

so that:
T∑

t=1

[u(c′
t) − u(c∗)] =

N∑
t=1

[u(c′
t) − u(c∗)] +

T∑
t=N+1

[u(c′
t) − u(c∗)]

≥
N∑

t=1

[u(ct) − u(c∗)] + ˇ = � + ˇ

(10)

Thus, for all T > N + 1, using (9) and (10),

T∑
t=1

[u(c′
t) − u(ct)] ≥

(
ˇ

3

)
(11)

contradicting the weak maximality of 〈kt〉.
(ii) Since 〈kt〉 is good, and (G) holds, kt must converge to some golden-rule stock by Proposition 2, and so kt converges to

k∗ by (i). �

The result of Proposition 4 entails that all we need to provide in the rest of this section is an example in which a utilitarian
maximal program exists and converges to a golden-rule stock higher than the minimal golden-rule stock. Proposition 4 then
implies that the equivalence between weak maximality and utilitarian maximality fails. And, Proposition 3 implies that the
Phelps–Koopmans condition fails.

The production function in our example has two golden-rule stocks. We construct a competitive program for which the
sequence of stocks converges to the higher golden-rule stock (from above), but is nevertheless efficient. By Corollary 2 in
the previous section, it is utilitarian maximal.

We observe that this construction is harder than the construction of an efficient program for which the sequence of stocks
converges to a golden-rule stock higher than the minimum golden-rule stock (a violation of the Phelps–Koopmans condition),
the additional difficulty arising from the fact that we have to ensure that the program also satisfies the Ramsey–Euler equation
at each date.

The construction of the example involves “reverse engineering”. We first choose a sequence of stocks that will be suitable
to work with. We then specify the production function (with two golden-rule stocks) such that this sequence of stocks is a
program, which converges to the higher golden-rule stock. Finally, we specify the utility function which (together with the



K. Banerjee, T. Mitra / Journal of Mathematical Economics 46 (2010) 279–292 287

specification of the production function) makes the chosen program a competitive program. The steps of the formal analysis
are somewhat involved and have been divided into five steps for clarity.

Step 1. [Construct a monotone decreasing sequence from k = 4]: let m ≡
√

2. Define a sequence
〈

kt

〉
by

kt+1 = mk1/2
t for t ≥ 0; k0 = k = 4 (12)

The sequence is well-defined by (12). It has the following properties:

(i) kt > 2 for t ≥ 0 (ii) kt+1 < kt for t ≥ 0 (13)

Clearly, we have kt > 0for t ≥ 0. To check (i), note that k0 > 2, and if kt > 2, then kt+1 = mk1/2
t > m

√
2 = 2, so that the

property follows by induction. For (ii), note that (kt+1/kt) = m/k1/2
t < m/

√
2 = 1, the inequality following from property (i).

Thus,
〈

kt

〉
is a decreasing sequence, bounded below by 2, so it converges to some k, and using (12), it is easy to check

that k = 2.
Step 2. [Define a production function suitably so that

〈
kt

〉
, defined in Step 1, is a program from k = 4]: to this end, let a = 2

√
2,

and define f : [0, 8] → [0, 8], by

f (x) =

⎧⎪⎨
⎪⎩

3x for 0 ≤ x ≤ 1

3 + (x − 1)2 for 1 < x ≤ 2

ax1/2 for 2 < x ≤ 8

(14)

One can then satisfy (F.1) and (F.2) by defining f (x) = 8 + (1/2)(x − 8) for all x > 8. Note that G = {1, 2}, hence k∗ = 1, c∗ = 2
and k̄ = 8. We will focus our attention on stocks in [0, 8].

Define s = 1/2. For t ≥ 0, we have f (kt) − kt+1 = ak1/2
t − kt+1 = 2(sa)k1/2

t − kt+1 = 2mk1/2
t − kt+1 = kt+1, by (12). Thus,〈

kt

〉
is a program from k = 4, and ct+1 = kt+1 for all t ≥ 0.

Step 3. [Define the utility function suitably so that
〈

kt

〉
satisfies the Ramsey-Euler equations]: let u : R+ → R be defined by

u(c) =
{

2c1/2 − 2 for 0 ≤ c ≤ 1
ln c for c > 1

Clearly, u satisfies (U.1).
Since ct = kt > 2 for all t ≥ 1, we have u′(ct) = (1/ct) = (1/kt) for all t ≥ 1. And, since kt > 2 for all t ≥ 1, we have f ′(kt) =

(1/2)a/k1/2
t = m/k1/2

t for all t ≥ 1. Thus, for all t ≥ 1, we have, by using (12):

u′(ct)
u′(ct+1)

= ct+1

ct
= kt+1

kt
= m

k1/2
t

= f ′(kt) (RE)

so that the Ramsey–Euler equations are satisfied.
Step 4. [Define a sequence 〈pt〉 , such that

〈
kt

〉
is a competitive program from k, with associated prices〈pt〉]: let us define:

pt = u′(ct) =
(

1
ct

)
for t ≥ 1; p0 = p1f ′(k) (P)

Since u is concave, and u is differentiable at each ct , we have, for each t ≥ 1,

u(c) − u(ct) ≤ u′(ct)(c − ct) = pt(c − ct) for all c ≥ 0

verifying (CE)(a).
It remains to verify (CE)(b). To this end, define g : [0, 8] → [0, 8] by

g(x) =
{

3x for 0 ≤ x ≤ 1
3 + (x − 1) for 1 < x ≤ 2
ax1/2 for 2 < x ≤ 8

Note that g(x) = f (x) for x ∈ [0, 1] and x ∈ [2, 8], and g(x) > f (x) for x ∈ (1, 2). Also, g is a concave function on [0, 8], since the
right-hand derivative of g is non-increasing on [0, 8), and g is continuous on [0, 8].

For each t ≥ 1, we have kt ∈ (2, 4], and so g is differentiable at each kt . This yields:

f (x) − f (kt) ≤ g(x) − g(kt) ≤ g′(kt)(x − kt) = f ′(kt)(x − kt) for all x ≥ 0

so that for each t ≥ 1,

pt+1[f (x) − f (kt)] ≤ pt+1f ′(kt)(x − kt) = pt(x − kt) for all x ≥ 0 (15)

by using (RE) and (P). Also, since k = 4, we have:

f (x) − f (k) ≤ g(x) − g(k) ≤ g′(k)(x − k) = f ′(k)(x − k) for all x ≥ 0
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This yields:

p1[f (x) − f (k)] ≤ p1f ′(k)(x − k) = p0(x − k) for all x ≥ 0 (16)

by using (P). Clearly, (15) and (16) verify (CE)(b).
Step 5. [Show that

〈
kt

〉
is efficient]: suppose, on the contrary, there is a feasible path {k′

t} from k = 4, such that:

c′
t+1 ≥ ct+1 for all t ≥ 0 (17)

with strict inequality in (17) for some t = � ≥ 0. Denoting the difference between the two sides of (17) for t = � by ˛, we
have p�+1˛ ≤

∑T
t=0pt+1(c′

t+1 − ct+1) =
∑T

t=0(pt+1f (k′
t) − ptk′

t) − (pt+1f (kt) − ptkt) + pT+1(kT+1 − k′
T+1) for all T ≥ �. Thus, by

(15), pT+1(kT+1 − k′
T+1) ≥ p�+1˛ > 0 for all T ≥ �. So, we have (kT+1 − k′

T+1) > 0 for all T ≥ �, and since pt = u′(ct) = 1/ct =
1/kt < 1/2 for all t ≥ 1, we obtain:

(kT+1 − k′
T+1) ≥ 2p�+1˛ ≡ ˇ for all T ≥ � (18)

Since kt → 2 as t → ∞, (18) implies that there is N > �, such that k′
t < 2 for all t ≥ N.

We focus now on t ≥ N. For such t, we have:

k′
t+1 = f (k′

t) − c′
t+1 ≤ 2 + k′

t − ct+1 = 2 + k′
t − kt+1 < k′

t (19)

Thus, k′
t is decreasing over time for t ≥ N, and (since it is bounded below) must converge to some k′ ∈ [0, 2). In this case, c′

t+1
must converge to f (k′) − k′. But, by (17), we must then have f (k′) − k′ ≥ 2. There is only one value of x ∈ [0, 2) for which this
is true, namely k∗ ≡ 1. Thus, k′

t is decreasing over time for t ≥ N and converging to k∗ ≡ 1.
For t ≥ N, we denote [k′

t − 1] by εt . Then, we have for t ≥ N, using (17) and (14), k′
t+1 = f (k′

t) − c′
t+1 ≤ 3 + ε2

t − 2 −
�t+1,where �t+1 ≡ ct+1 − 2 = kt+1 − 2 > 0 for t ≥ 0. Thus, we must have:

εt+1 ≤ ε2
t − �t+1 for all t ≥ N′ (20)

We now focus on the sequence {�t+1}. Clearly, by concavity of f on [2, 8], we have:

(kt+1 − k) = mk1/2
t − mk1/2 ≥

[
m

2k1/2
t

]
(kt − k) > (

1
4

)(kt − k) for all t ≥ N

So, for all t ≥ N,

�t+1

�t
= ct+1 − 2

ct − 2
= kt+1 − 2

kt − 2
= kt+1 − k

kt − k
>

(
1
4

)
(21)

Since εt → 0 as t → ∞, we can find N′ > N such that εt < (1/8) for all t ≥ N′. Then, for t ≥ N′, using (20) and (21), we
obtain:

εt+1

�t+1
≤ ε2

t

�t+1
− 1 ≤ 4ε2

t

�t
− 1 = (4εt)

[
εt

�t

]
− 1

≤
(

1
2

)[
εt

�t

]
− 1

≤
(

1
2

)[
εt

�t

] (22)

Then, by the last inequality of (22), we obtain (εt/�t) → 0 as t → ∞. And, using this information in the last but one inequality
of (22), we must have (εt+1/�t+1) < 0 for all large t, a contradiction. This establishes our claim that

〈
kt

〉
is an efficient path

from k.

6. Proofs

Proof of Proposition 1. Denote u′+(c∗) by p∗; p∗ is well-defined since c∗ > 0. Since u is strictly increasing and concave, we
must have p∗ > 0. By concavity of u we have u(c) − u(c∗) ≤ u′+(c∗)(c − c∗) = p∗(c − c∗) for all c ≥ 0. By transposing terms (UP)
can be easily verified.

For any k ∈G, we have f (k) − k ≥ f (x) − x for all x ≥ 0. Multiplying the inequality throughout by p∗ > 0 yields (FP). �

Remark 1. The inequality is strict in (UP) when c /= c∗. This follows from the strict concavity of u. Also (FP) holds with strict
inequality whenever x /∈ G.

Pick k′′ ∈ (k∗, k̄), with k′′ sufficiently close to k̄ so that f (k̄) − k′′ ≤ c∗.
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Lemma 1. If 〈kt〉 is an efficient program from k ∈ (0, k̄], then there is a subsequence (t1, t2, . . . . . .) such that kts ≤ k′′ for all s ∈N.

Proof. If the Lemma is not true then there is some N ∈N, such that kt > k′′ for all t ≥ N. In this case, ct = f (kt−1) − kt <
f (k̄) − k′′ ≤ c∗ for all t > N. Defining k′

t = kt for t = 0, 1, . . . , N and k′
t = k∗ for t > N, we have c′

t = ct for t = 1, . . . , N and
c′

t ≥ c∗ > ct for t > N. This contradicts the efficiency of 〈kt〉. �

For x ∈ (0, k̄], define f 0(x) = x and f n(x) = f (f n−1(x)) for all n ∈N. Then, 〈f n(x)〉∞n=0 is a non-decreasing sequence, which
converges to k̄. Thus, for every k̃ ∈ (0, k̄),

i(x, k̃) = min{i ∈N : f i(x) ≥ k̃}

is well defined.

Proof of Theorem 1. Given k ∈ (0, k̄], denote i(k, k∗) by M and i(k∗, k′′) by N. Since 〈kt〉 is utilitarian maximal, it is efficient
and so by Lemma 1, there is a subsequence (t1, t2, . . .) such that kts ≤ k′′ for all s ∈N. Pick any s ∈N such that ts > M + N + 1.
Define a sequence 〈k′

t〉 as follows:

(i) (k′
0, . . . , k′

M−1) = (f 0(k), . . . , f M−1(k))

(ii) (k′
M, . . . , k′

ts−N−1) = (k∗, . . . , k∗)

(iii) (k′
ts−N, . . . , k′

ts
) = (f 0(k∗), . . . , f N−1(k∗), kts )

(iv) k′
t = kt for all t > ts

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

It is straightforward to check that 〈k′
t〉 is a program from k, with c′

t ≥ 0 for t = 1, . . . , M; c′
t = c∗ for t = M + 1,...,ts − N;

c′
t ≥ 0 for t = ts − N + 1, . . . , ts and c′

t = ct for t > ts. Clearly,

ts∑
t=1

(u(c′
t) − u(c∗)) ≥ −(M + N)[u(c∗) − u(0)]

Since 〈kt〉 is utilitarian maximal, and c′
t = ct for t > ts, we must have:

ts∑
t=1

(u(ct) − u(c∗)) ≥ −(M + N)[u(c∗) − u(0)]

Since this inequality must hold for each s ∈N satisfying ts > M + N + 1, 〈kt〉 cannot be bad. By Corollary 1, it must be
good. �

Let us define

˛(c) = [u(c∗) − p∗c∗] − [u(c) − p∗c] for all c ≥ 0

and

ˇ(x) = p∗[f (k∗) − k∗] − p∗[f (x) − x] for all x ≥ 0

By (UP), ˛(c) ≥ 0 for all c ≥ 0 and by (FP), ˇ(x) ≥ 0 for all x ≥ 0. For any feasible program
〈

kt

〉
from k ∈ [0, k̄] the following

identity can be easily verified:

T∑
t=1

[u(c∗) − u(ct)] = p∗[f (kT ) − f (k)] +
T∑

t=1

˛t +
T∑

t=1

ˇt (IG)

where, ˛t = ˛(ct) and ˇt = ˇ(kt) and 〈ct〉 is the consumption sequence associated with
〈

kt

〉
.

Lemma 2.

(i) If
〈

kt

〉
is a good program, then the sequence (f (kt) − kt) must converge to c∗ as t → ∞.

(ii) If
〈

kt

〉
is a good program and 〈ct〉 is the the consumption sequence associated with

〈
kt

〉
, then ct must converge to c∗ as t → ∞.

Proof. Since
〈

kt

〉
is a good program, there is some G ∈R such that:

G ≥
T∑

t=1

[u(c∗) − u(ct)] ≥ −p∗f (k̄) +
T∑

t=1

˛t +
T∑

t=1

ˇt for all T ≥ 1 (23)
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using (IG). The identity (23) implies that the partial sums
∑T

t=1˛t and
∑T

t=1ˇt are bounded above. Since ˛t ≥ 0 and ˇt ≥ 0

for all t, the partial sums
∑T

t=1˛t ,
∑T

t=1ˇt are non-decreasing. Hence,
∑∞

t=1˛t and
∑∞

t=1ˇt are convergent series, and ˛t → 0
and ˇt → 0 as t → ∞. Since ˇt → 0 as t → ∞, (i) is established.

Since ˛t → 0 as t → ∞, we have [u(ct) − p∗ct] → [u(c∗) − p∗c∗]. We now claim that ct → c∗ as t → ∞. For if this is not the
case, then since ct ∈ [0, k̄] for all t ≥ 1, there is a convergent subsequence 〈cts 〉 of 〈ct〉 which converges to c /= c∗. Since [u(ct) −
p∗ct] → [u(c∗) − p∗c∗] as t → ∞, [u(cts ) − p∗cts ] must also converge to [u(c∗) − p∗c∗]. However, by continuity of u, [u(cts ) −
p∗cts ] converges to [u(c) − p∗c] and [u(c) − p∗c] < [u(c∗) − p∗c∗] since c /= c∗ (by strict concavity of u). This contradiction
proves (ii). �

Proof of Proposition 2. Observe using Lemma 4, since
〈

kt

〉
is a good program,

(f (kt) − kt) → c∗ as t → ∞ (24)

and

(f (kt) − kt+1) → c∗ as t → ∞ (25)

We would like to show, using (24) and (25), that kt → k′ where k′ is some golden-rule stock. Let us write G = {k1, . . . , kn},
with

0 < k1 < · · · < kn < k̄

Define:

� = min{k1, k2 − k1, k3 − k2, . . . , kn − kn−1, k̄ − kn}
Since (f (ki) − ki) = c∗ for i ∈ {1, . . . , n}, and f is continuous, we know that, for each ki ∈G,

c∗ − (f (x) − x) → 0 as x → ki

Thus, we can find ˛ ∈ (0, �/4) with ˛ sufficiently close to zero so that for each ki ∈G,

c∗ − (f (x) − x) <
�

4
for all x ∈ [ki − ˛, ki + ˛] (26)

Note that the finiteness of the set G is used to obtain (26). Define for each i ∈ {1, . . . , n},
Ai = (ki − ˛, ki + ˛), Āi = [ki − ˛, ki + ˛]

and

A = ∪n
i=1Ai; Ā = ∪n

i=1Āi; B = [0, k̄]∼A

Clearly, A is open and B is a non-empty, closed and bounded set. Define:

� = min
x ∈ B

{c∗ − (f (x) − x)} (27)

and

� = maxx ∈ Ā{c∗ − (f (x) − x)} (28)

Note that � > 0 since B contains no golden-rule stock; also, � > 0 since Ā contains points other than golden-rule stocks.
Further, � < (�/4) by (26). Denote min{�, �} by �. Using (24) and (25), choose N ∈N such that for all t ≥ N,

{c∗ − (f (kt) − kt)} <
(

�

2

)
(29)

and

|c∗ − (f (kt) − kt+1)| <
(

�

2

)
(30)

Since �/2 < �, (27) and (29) imply that, for each t ≥ N, we have kt /∈ B. That is,

kt ∈ A for each t ≥ N (31)

Clearly, (31) implies that there is some r ∈ {1, . . . , n}, such that kN ∈ Ar . We now claim that:

kt ∈ Ar for all t ≥ N (32)

If claim (32) were false, let T > N be the first period where it fails to hold. Then, kT−1 ∈ Ar , but kT /∈ Ar . By (31), we can find
s ∈ {1, . . . , n}, such that kT ∈ As; clearly s /= r. Since kT−1 ∈ Ar , we have kT−1 ∈ Ā, and by (28), c∗ − [f (kT−1) − kT−1] ≤ �, so that:

[f (kT−1) − kT−1] ≥ c∗ − � (33)
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Since kT−1 ∈ Ar , but kT ∈ As, s /= r, we have the following two possibilities: Case (i) [kT−1 − kT ] > (�/2); Case (ii) [kT−1 − kT ] <
−(�/2). In case (i), we get, using (33),

f (kT−1) − kT = [f (kT−1) − kT−1] + [kT−1 − kT ]

> [f (kT−1) − kT−1] +
(

�

2

)

≥ c∗ − � +
(

�

2

)
> c∗ +

(
�

4

)
> c∗ + �

(34)

the last line of (34) using the fact that � ≤ � < (�/4). But, (33) clearly contradicts (30). In case (ii), we get:

f (kT−1) − kT = [f (kT−1) − kT−1] + [kT−1 − kT ]

< [f (kT−1) − kT−1] −
(

�

2

)

≤ c∗ −
(

�

2

)
< c∗ − �

(35)

the last line of (35) using the fact that � ≤ � < (�/4) < (�/2). But, (35) clearly contradicts (30). This establishes the claim
(32). Since kr is the only value in Ar at which f (x) − x = c∗, (24) and (32) imply that kt → kr as t → ∞. �

Proof of Theorem 2. A weakly maximal program is clearly utilitarian maximal. It remains to establish the converse. Let〈
kt

〉
be a utilitarian maximal program from k ∈ (0, k̄]. Suppose

〈
kt

〉
is not weakly maximal from k. Then there is a feasible

program
〈

k′
t

〉
from k, N′ ∈N and ˛ > 0 such that for all T > N′,

T∑
t=1

(u(c′
t) − u(ct)) ≥ ˛ (36)

Since
〈

kt

〉
is a good program by Theorem 1, there exists some G ∈R and some T̄ ∈N such that for all T ≥ T̄ ,

T∑
t=1

(u(ct) − u(c∗)) ≥ G (37)

Then for any T > max{T̄ , N′}, using (36) and (37),

T∑
t=1

(u(c′
t) − u(c∗)) =

T∑
t=1

(u(c′
t) − u(ct)) +

T∑
t=1

(u(ct) − u(c∗))

≥ ˛ + G (38)

This shows that the program
〈

k′
t

〉
is a good program.

From Proposition 2, we know that there is some k′ ∈G such that k′
t → k′ as t → ∞. By Proposition 3, kt → k∗ ≤ k′ as t → ∞.

Since u and f are continuous, there exists M ∈Nwith M > N′ such that f (k′
M) − kM+1 ≥ 0, and

u(f (k′
M) − kM+1) − u(f (kM) − kM+1) ≥ −

(
˛

2

)
(39)

Let us now define a sequence 〈k′′
t 〉 as follows: k

′′
t = k′

t for all t = 1,...,M and k
′′
t = kt for all t > M. Clearly

〈
k

′′
t

〉
is a program from

k and u(c
′′
t ) = u(ct) for all t ≥ M + 2. Also,

M+1∑
t=1

(u(c
′′
t ) − u(ct)) =

M∑
t=1

(u(c
′′
t ) − u(ct)) + (u(c

′′
M+1) − u(cM+1))

=
M∑

t=1

(u(c′
t) − u(ct)) + (u(c

′′
M+1) − u(cM+1))

≥ ˛ −
(

˛

2

)
=

(
˛

2

)
> 0

(40)

The second line in (40) follows from noting that k′′
t = k′

t for all t = 1, . . . , M. The first term in the inequality in the last line of
(40) follows from (36) and the fact that M > N′. The second term in the inequality in the last line of (40) follows from (39).
This shows that

〈
k

′′
t

〉
utilitarian dominates

〈
kt

〉
, a contradiction. �
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